962-P

ADA 2023 June 23–26 San Diego, CA

Impact of Digital Diabetes Solution on Glycemic Control in Adults With Type 2 Diabetes Mellitus in the United States: **A Retrospective Cohort Study** Nita Thingalaya,¹ David Kerr,² Praveen Potukuchi,¹ Laura Wilson,¹ Keni C.S. Lee,³ Edward Jonathan Han-Burgess,⁴ Alison Edwards,⁵ Xinyan Yu,⁵ Adee Kennedy,¹ Felix Lee¹

¹Sanofi, Bridgewater, NJ, USA; ²Diabetes Technology Society, Santa Barbara, CA, USA; ³Sanofi, Reading, UK; ⁴Sanofi, Cambridge, MA, USA; ⁵Symphony Health, ICON plc, Blue Bell, PA, USA

INTRODUCTION

- Diabetes, a chronic condition that requires continuous management, has been estimated to affect 37.3 million individuals in the United States.¹
- A reduction in glycated hemoglobin (HbA1c) of ~1% is associated with decreased risk of diabetes-related complications.²
- Digital healthcare technologies allow for personalized intervention and have been developed to improve diabetes care management.^{3,4}
- Digital healthcare technology can reduce HbA1c levels in patients with type 2 diabetes mellitus (T2DM) compared with usual care.⁴
- Dario Diabetes Solution (DDS) is a digital health application for diabetes management.
- DDS combines a blood glucose meter and a mobile application, allowing patients to track blood glucose levels in real-time.

OBJECTIVE

 To evaluate effectiveness of DDS on HbA1c reduction in DDS users compared with a matched non-user cohort

METHODS

 In this retrospective cohort study, the patient selection window was January 2017 to October 2021 (Figure 1).

Figure 1: Study timeline DDS Users (n=568) DDS Non-Users (n=1699) Adults with T2DM, with baseline Adults with T2DM, with baseline HbA1c ≥7% who did not use HbA1c ≥7% who used DDS DDS but received usual care Baseline Period: Follow-Up Period: 6 months* look forward from index 1 year look back from index October 2021 January 2017 Index Event DDS users: registration date DDS non-users: 1st claim date in quarter *HbA1c values were captured at 6 months (180 + 60 days). DDS, Dario Diabetes Solution; HbA1c, glycated hemoglobin; T2DM, type 2 diabetes mellitus.

 User and non-user cohorts were sequentially matched 1:3 using exact and propensity score matching (Figures 2 and 3).

EXACT MATCH

Quarter of index date falls

PROPENSITY SCORE MATCH

Age

CCI, Charlson Comorbidity Index; DDS, Dario Diabetes Solution; HbA1c, glycated hemoglobin.

- Inclusion criteria

- +420 days)
- Excluded were patients with continuous glucose monitoring before and within 420 days after app registration.
- Primary endpoint was change in HbA1c from baseline to 6 months.
- Subgroup analyses
- Patients stratified by baseline HbA1c of >7.5%, >8%, and >9%
- Difference-in-difference results were reported using least squares (LS) means from linear models.

Figure 3: Mirrored histogram of propensity scores

 Patients ≥18 years old with T2DM who used DDS or received usual care Patients receiving ≥1 diabetes medication (oral or injectable) before index date Patients with HbA1c ≥7% during baseline (index -365 days to index +30 days) Patients with ≥1 HbA1c measurement during follow-up (index +31 days to index

Patients with ≥1% drop in HbA1c compared with baseline

RESULTS

• For the total 2267 patients, mean ± SD age was 57.5±11.3 years, and baseline HbA1c was 9.14±1.83%; cohorts were well matched (Table 1, Figure 4).

Table 1: Demographics and baseline cha

Characteristics	DDS User Cohort n=568	DDS Non-user Cohort n=1699	Standardized Mean Difference [†]			
Mean ± SD age, years	57.3±10.5	57.6±11.6	-0.027			
Female, n (%)	262 (46.1)	784 (46.1)	-0.0004			
Race, n (%)						
African American	55 (9.7)	173 (10.2)	-0.017			
Asian	8 (1.4)	22 (1.3)	0.010			
Hispanic	66 (11.6)	202 (11.9)	-0.008			
White	316 (55.6)	933 (54.9)	0.014			
Mean ± SD HbA1c, %	9.14±1.78	9.13±1.85	0.006			
Antidiabetic medications, n (%)						
Any combination/other injectable only	245 (43.1)	734 (43.2)	-0.001			
Insulin only	34 (6.0)	101 (5.9)	0.002			
Oral antidiabetic medications	289 (50.9)	864 (50.9)	0.0005			
*For all characteristics, the difference between DDS users and non-users was not statistically significant						

I OF All CHARACLEHSLICS, LIE UNEFERCE DELWEEN DDS USERS AND NON-USERS WAS I (all *P*≥0.65).

[†]Standardized mean difference threshold was 0.1.

DDS, Dario Diabetes Solution; HbA1c, glycated hemoglobin; T2DM, type 2 diabetes mellitus.

Figure 4: Geography & payment type Matched DDS Users (n=568) Northeas 4.8% Midwes 12.2% Southeast 32.6% Other Territories Commercial Medicare 17.8% Other 6.7 Medicaid* 4.9% 0 10 20 30 40 50 60 70 80 *Medicaid/Managed Medicaid. DDS, Dario Diabetes Solution.

- At 6 months, LS mean difference between DDS users and non-users was -0.23% (Figure 5).
- DDS users achieved significantly greater reduction in HbA1c compared with non-users (*P*=0.004).

				J
nara	cte	ris	tic	;S*

- In subgroup analysis, DDS users achieved greater reduction in HbA1c across different baseline HbA1c levels compared with non-users (P<0.002; Figure 5).
- For patients with baseline HbA1c >9%, the standard Healthcare Effectiveness Data and Information Set (HEDIS) performance measure, mean difference between groups was -0.47%.

*Change from baseline (generalized linear model mean). DDS, Dario Diabetes Solution; HbA1c, glycated hemoglobin. Bars represent mean HbÁ1c.

Figure 7: Patients with ≥1% reduction in HbA1c at 6 months compared with baseline

DDS, Dario Diabetes Solution; HbA1c, glycated hemoglobin. Bars represent percentage of patients. Error bars represent 95% CI.

- At 6 months, DDS user subgroups stratified by baseline HbA1c levels achieved significant reduction in HbA1c compared with baseline (P<0.0001 for all; Figure 6).
- At 6 months, an HbA1c drop ≥1% from baseline was achieved by 10.2% more DDS users vs non-users (P<0.001; Figure 7).

CONCLUSIONS

- In this retrospective cohort study, adults with uncontrolled T2DM using DDS had better glycemic outcomes at 6 months compared with non-users.
- At 6 months, DDS users achieved a significantly greater reduction in HbA1c compared with non-users (-0.23%; *P*=0.004).
- For patients with higher baseline HbA1c (HEDIS endpoint >9%), DDS users achieved greater HbA1c reduction compared with non-users (-0.47%; P=0.0016).
- DDS user subgroups stratified by baseline HbA1c levels achieved significant reduction in HbA1c compared with baseline (*P*<0.0001).
- A significantly greater proportion of DDS users achieved HbA1c reduction $\geq 1\%$ compared with non-users (P<0.001).
- Given the retrospective study design, residual confounding differences may exist between groups; however, the study overall had a robust methodology of exact and propensity score matching.

References

1. Centers for Disease Control and Prevention. National Diabetes Statistics Report. https://www.cdc.gov/diabetes/data/statistics-report/index.html. Accessed May 4, 2023; 2. Stratton IM, et al. BMJ. 2000;321(7258):405-412; 3. Chen F, et al. Sci Diabetes Self Manag *Care.* 2022;48(4):258-269; **4.** Stevens S, et al. *Front Clin Diabetes Healthc.* 2022;3:936752.

Disclosures

This study was sponsored by Sanofi. N. Thingalaya, P. Potukuchi, L. Wilson, K.C.S. Lee, F. Lee, A. Kennedy, and E. Han-Burgess are employees of Sanofi and may hold stocks/shares in Sanofi. D. Kerr received consultancy fees from Sanofi. A. Edwards and X. Yu are employees at Symphony Health, ICON plc, and received support from Sanofi.

Acknowledgments

Editorial assistance was provided by Natalia Zhukovskaya, PhD, of ICON plc (Blue Bell, PA, USA) and was funded by Sanofi.